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We describe the general phenomenon of ‘induced-charge electro-osmosis’ (ICEO) –
the nonlinear electro-osmotic slip that occurs when an applied field acts on the ionic
charge it induces around a polarizable surface. Motivated by a simple physical picture,
we calculate ICEO flows around conducting cylinders in steady (DC), oscillatory (AC),
and suddenly applied electric fields. This picture, and these systems, represent perhaps
the clearest example of nonlinear electrokinetic phenomena. We complement and
verify this physically motivated approach using a matched asymptotic expansion to the
electrokinetic equations in the thin-double-layer and low-potential limits. ICEO slip
velocities vary as us ∝ E2

0L, where E0 is the field strength and L is a geometric length
scale, and are set up on a time scale τc = λDL/D, where λD is the screening length
and D is the ionic diffusion constant. We propose and analyse ICEO microfluidic
pumps and mixers that operate without moving parts under low applied potentials.
Similar flows around metallic colloids with fixed total charge have been described in
the Russian literature (largely unnoticed in the West). ICEO flows around conductors
with fixed potential, on the other hand, have no colloidal analogue and offer further
possibilities for microfluidic applications.

1. Introduction
Recent developments in micro-fabrication and the technological promise of micro-

fluidic ‘labs on a chip’ have brought a renewed interest to the study of low-Reynolds-
number flows (Stone & Kim 2001; Whitesides & Stroock 2001; Reyes et al. (2002)).
The familiar techniques used in larger-scale applications for fluid manipulation, which
often exploit fluid instabilities due to inertial nonlinearities, do not work on the micron
scale due to the pre-eminence of viscous damping. The microscale mixing of miscible
fluids must thus occur without the benefit of turbulence, by molecular diffusion alone.
For extremely small devices, molecular diffusion is relatively rapid; however, in typical
microfluidic devices with 10–100 µm features, the mixing time can be prohibitively
long (of order 100 s for molecules with diffusivity 10−10 m2 s−1). Another limitation
arises because the pressure-driven flow rate through small channels decreases with
the third or fourth power of channel size. Innovative ideas are thus being considered
for pumping, mixing, manipulating and separating on the micron length scale (e.g.
Beebe, Mensing & Walker 2002; Whitesides et al. 2001). Naturally, many focus on
the use of surface phenomena, owing to the large surface to volume ratios of typical
microfluidic devices.

Electrokinetic phenomena provide one of the most popular non-mechanical tech-
niques in microfluidics. The basic idea behind electrokinetic phenomena is as follows:
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locally non-neutral fluid occurs adjacent to charged solid surfaces, where a diffuse
cloud of oppositely charged counter-ions ‘screens’ the surface charge. An externally
applied electric field exerts a force on this charged diffuse layer, which gives rise to
a fluid flow relative to the particle or surface. Electrokinetic flow around stationary
surfaces is known as electro-osmotic flow, and the electrokinetic motion of freely
suspended particles is known as electrophoresis. Electro-osmosis and electrophoresis
find wide application in analytical chemistry (Bruin 2000), genomics (Landers 2003)
and proteomics (Figeys & Pinto 2001; Dolnik & Hutterer 2001).

The standard picture for electrokinetic phenomena involves surfaces with fixed, con-
stant charge (or, equivalently, zeta-potential ζ , defined as the potential drop across
the screening cloud). Recently, variants on this picture have been explored. Anderson
(1985) demonstrated that interesting and counter-intuitive effects occur with spatially
inhomogeneous zeta-potentials, and showed that the electrophoretic mobility of a
colloid was sensitive to the distribution of surface charge, rather than simply the total
net charge. Anderson & Idol (1985) explored electro-osmotic flow in inhomogeneously
charged pores, and found eddies and recirculation regions. Ajdari (1995, 2002) and
Stroock et al. (2000) showed that a net electro-osmotic flow could be driven either
parallel or perpendicular to an applied field by modulating the surface and charge
density of a microchannel, and Gitlin et al. (2003) have implemented these ideas to
make a ‘transverse electrokinetic pump’. Such transverse pumps have the advantage
that a strong field can be established with a low voltage applied across a narrow
channel. Long & Ajdari (1998) examined electrophoresis of patterned colloids, and
found example colloids whose electrophoretic motion is always transverse to the
applied electric field. Finally, Long, Stone & Ajdari (1999), Ghosal (2003), and others
have studied electro-osmosis along inhomogeneously charged channel walls (due
to, e.g., adsorption of analyte molecules), which provides an additional source of
dispersion that can limit resolution in capillary electrophoresis.

Other variants involve surface charge densities that are not fixed, but rather
are induced (either actively or passively). For example, the effective zeta-potential of
channel walls can be manipulated using an auxillary electrode to improve separa-
tion efficiency in capillary electrophoresis (Lee, Blanchard & Wu 1990; Hayes &
Ewing 1992) and, by analogy with the electronic field-effect transistor, to set up ‘field-
effect electro-osmosis’ (Ghowsi & Gale 1991; Gajar & Geis 1992; Schasfoort et al.
1999).

Time-varying, inhomogeneous charge double layers induced around electrodes give
rise to interesting effects as well. Trau, Saville & Aksay (1997) and Yeh, Seul &
Shraiman (1997) demonstrated that colloidal spheres can spontaneously self-assemble
into crystalline aggregates near electrodes under AC applied fields. They proposed
somewhat similar electrohydrodynamic mechanisms for this aggregation, in which an
inhomogeneous screening cloud is formed by (and interacts with) the inhomogeneous
applied electric field (perturbed by the sphere), resulting in a rectified electro-osmotic
flow directed radially in toward the sphere. More recently, Nadal et al. (2002a) perfor-
med detailed measurements in order to test both the attractive (electrohydrodynamic)
and repulsive (electrostatic) interactions between the spheres, and Ristenpart, Aksay &
Saville (2003) explored the rich variety of patterns that form when bidisperse colloidal
suspensions self-assemble near electrodes.

A related phenomenon allows steady electro-osmotic flows to be driven using AC
electric fields. Ramos et al. (1998, 1999) and Gonzalez et al. (2000) theoretically
and experimentally explored ‘AC electro-osmosis’, in which a pair of adjacent, flat
electrodes located on a glass slide and subjected to AC driving, gives rise to a steady
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electro-osmotic flow consisting of two counter-rotating rolls. Around the same time,
Ajdari (2000) theoretically predicted that an asymmetric array of electrodes with
applied AC fields generally pumps fluid in the direction of broken symmetry (‘AC
pumping’). Brown, Smith & Rennie (2001), Studer et al. (2002), and Mpholo, Smith &
Brown (2003) have since developed AC electrokinetic micro-pumps based on this
effect, and Ramos et al. (2003) have extended their analysis.

Both AC colloidal self-assembly and AC electro-osmosis occur around electrodes
whose potential is externally controlled. Both effects are strongest when the voltage
oscillates at a special AC frequency (the inverse of the charging time discussed below),
and both effects disappear in the DC limit. Furthermore, both vary with the square
of the applied voltage V0. This nonlinear dependence can be understood qualitatively
as follows: the induced charge cloud/zeta-potential varies linearly with V0, and the
resulting flow is driven by the external field, which also varies with V0. On the other
hand, DC colloidal aggregation, as explored by Solomentsev, Bohmer & Anderson
(1997), requires large enough voltages to pass a Faradaic current, and is driven by a
different, linear mechanism.

Very recently in microfluidics, a few cases of nonlinear electro-osmotic flows around
isolated and inert (but polarizable) objects have been reported, with both AC and
DC forcing. In a situation reminiscent of AC electro-osmosis, Nadal et al. (2002b)
studied the micro-flow produced around a dielectric stripe on a planar blocking
electrode. In rather different situations, Thamida & Chang (2002) observed a DC
nonlinear electrokinetic jet directed away from a protruding corner in a dielectric
microchannel, far away from any electrode, and Takhistov, Duginova & Chang (2003)
observed electrokinetically driven vortices near channel junctions. These studies (and
the present work) suggest that a rich variety of nonlinear electrokinetic phenomena
at polarizable surfaces remains to be exploited in microfluidic devices.

In colloidal science, nonlinear electro-osmotic flows around polarizable (metallic
or dielectric) particles were studied almost two decades ago in a series of Ukrainian
papers, reviewed by Murtsovkin (1996), that has gone all but unnoticed in the West.
Such flows occur when the applied field acts on the component of the double-layer
charge that has been polarized by the field itself. This idea can be traced back at
least to Levich (1962), who discussed the dipolar charge double layer (using the
Helmholtz model) that is induced around a metallic colloidal particle in an external
electric field and touched upon the quadrupolar flow that would result. Simonov &
Dukhin (1973) calculated the structure of the (polarized) dipolar charge cloud in
order to obtain the electrophoretic mobility, without concentrating on the resulting
flow. Gamayunov, Murtsovkin & Dukhin (1986) and Dukhin & Murtsovkin (1986)
first explicitly calculated the nonlinear electro-osmotic flow arising from double-layer
polarization around a spherical conducting particle, and Dukhin (1986) extended this
calculation to include a dielectric surface coating (as a model of a dead biological cell).
Experimentally, Gamayunov, Mantrov & Murtsovkin (1992) observed a nonlinear
flow around spherical metallic colloids, albeit in a direction opposite to predicitions
for all but the smallest particles. They argued that a Faradaic current (breakdown of
ideal polarizibility) was responsible for the observed flow reversal.

This work followed naturally from many earlier studies on ‘non-equilibrium electric
surface phenomena’ reviewed by Dukhin (1993), especially those focusing on the
‘induced dipole moment’ (IDM) of a colloidal particle reviewed by Dukhin & Shilov
(1980). Following Overbeek (1943), who was perhaps the first to consider non-
uniform polarization of the double layer in the context of electrophoresis, Dukhin
(1965), Dukhin & Semenikhin (1970), and Dukhin & Shilov (1974) predicted the
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electrophoretic mobility of a highly charged non-polarizable sphere in the thin-double-
layer limit, in good agreement with the later numerical solutions of O’Brien & White
(1978) (see, e.g., Lyklema 1991). In that case, diffuse charge is redistributed by surface
conduction, which produces an IDM aligned with the field, and some variations in
neutral bulk concentration, and secondary electro-osmotic and diffusio-osmotic flows
develop as a result. Shilov & Dukhin (1970) extended this work to a non-polarizable
sphere in an AC electric field. Simonov & Dukhin (1973) and Simonov & Shilov
(1973) performed similar calculations for an ideally polarizable, conducting sphere,
which typically exhibits an IDM opposite to the applied field. Simonov & Shilov
(1977) revisited this problem in the context of dielectric dispersion and proposed
a much simpler RC-circuit model to explain the sign and frequency dependence of
the IDM. O’Brien & White (1978) performed a numerical solution of the full ion,
electrostatic, and fluid equations with arbitrarily thick double layer, which naturally
incorporated the effects of double-layer polarization. O’Brien & Hunter (1981) and
O’Brien (1983), following Dukhin’s approach, arrived at a simpler, approximate
expression that incorporated double-layer polarization in the thin-double-layer limit,
and compared favourably with the numerical calculations of O’Brien & White (1978).
Nonetheless, it seems a detailed study of the associated electro-osmotic flows around
polarizable spheres did not appear until the paper of Gamayunov et al. (1986) cited
above.

In summary, we note that electrokinetic phenomena at polarizable surfaces share
a fundamental feature: all involve a nonlinear flow component in which double-layer
charge induced by the applied field is driven by that same field. To emphasize this
common mechanism, we suggest the term ‘induced-charge electro-osmosis’ (ICEO) for
their description. Specific realizations of ICEO include AC electro-osmosis at micro-
electrodes, AC pumping by asymmetric electrode arrays, DC electrokinetic jets around
dielectric structures, DC and AC flows around polarizable colloidal particles, and the
situations described below. Of course, other electrokinetic effects may also occur in
addition to ICEO in any given system, such as those related to bulk concentration
gradients produced by surface conduction or Faradaic reactions, but we ignore such
complications here to highlight the basic effect of ICEO.

In the present work, we build upon this foundation of induced-charge electrokinetic
phenomena, specifically keeping in mind microfluidic applications. ICEO flows around
metallic colloids, which have attracted little attention compared to non-polarizable
objects of fixed zeta-potential, naturally lend themselves for use in microfluidic devices.
In that setting, the particle is replaced by a fixed polarizable object which pumps the
fluid in response to applied fields, and a host of new possibilities arise. The ability to
directly control the position, shape, and potential of one or more ‘inducing surfaces’ in
a microchannel allows a rich variety of effects that do not occur in colloidal systems.

Before we begin, we note the difference between ICEO and ‘electrokinetic pheno-
mena of the second kind’, reviewed by Dukhin (1991) and studied recently by Ben &
Chang (2002) in the context of microfluidic applications. Significantly, second-kind
electrokinetic effects do not arise from the double layer, being instead driven by
space charge in the bulk solution. They typically occur around ion-selective porous
granules subject to applied fields large enough to generate strong currents of certain
ions through the liquid/solid interface. This leads to large concentration variations
and space charge in the bulk electrolyte on one side, which interact with the applied
field to cause motion. Barany, Mishchuk & Prieve (1998) studied the analogous effect
for non-porous metallic colloids undergoing electrochemical reactions at very large
Faradaic currents (exceeding diffusion limitation). In contrast, ICEO occurs around
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inert polarizable surfaces carrying no Faradaic current in contact with a homogeneous,
quasi-neutral electrolyte and relies on relatively small induced double-layer charge,
rather than bulk space charge.

The article is organized as follows: § 2 provides a basic background on electrokinetic
effects, and § 3 develops a basic physical picture of induced-charge electro-osmosis via
calculations of steady ICEO flow around a conducting cylinder. Section 4 examines
the time-dependent ICEO flow for background electric fields which are suddenly
applied (§ 4.1) or sinusoidal (§ 4.2). Section 5 describes some basic issues for ICEO
in microfluidic devices, such as coupling to the external circuit (§ 5.1) and the
phenomenon of fixed-potential ICEO (§ 5.2). Some specific designs for microfluidic
pumps, junction switches, and mixers are discussed and analysed in § 5.3. Section 6
investigates the detrimental effect of a thin dielectric coating on a conducting surface
and calculates the ICEO flow around non-conducting dielectric cylinders. Section 7
gives a systematic derivation of ICEO in the limit of thin double layers and small
potentials, starting with the basic electrokinetic equations and employing matched
asymptotic expansions, concluding with a set of effective equations (with approxima-
tions and errors quantified) for the ICEO flow around an arbitrarily shaped particle
in an arbitrary space- and time-dependent electric field. The interesting consequences
of shape and field asymmetries, which generally lead to electro-osmotic pumping or
electrophoretic motion in AC fields, are left for a companion paper. The reader is
referred to Bazant & Squires (2004) for an overview of our results.

2. Classical (‘fixed-charge’) electro-osmosis
Electrokinetic techniques provide some of the most popular small-scale non-

mechanical strategies for manipulating particles and fluids. We present here a very
brief introduction. More detailed accounts are given by Lyklema (1991), Hunter (2000)
and Russel, Saville & Schowalter (1989).

2.1. Small zeta-potentials

A surface with charge density q in an aqueous solutions attracts a screening cloud
of oppositely charged counter-ions to form the electrochemical ‘double layer’, which
is effectively a surface capacitor. In the Debye–Hückel limit of small surface charge,
the excess diffuse ionic charge exponentially screens the electric field set up by the
surface charge (figure 1a), giving an electrostatic potential

φ =
q

εwκ
e−κz ≡ ζ e−κz. (2.1)

Here εw ≈ 80ε0 is the dielectric permittivity of the solvent (typically water) and ε0 is
the vacuum permittivity. The ‘zeta-potential’, defined by

ζ ≡ q

εwκ
, (2.2)

reflects the electrostatic potential drop across the screening cloud, and the Debye
‘screening length’ κ−1 is defined for a symmetric z:z electrolyte by

κ−1 ≡ λD =

√
εwkBT

2n0(ze)2
, (2.3)

with bulk ion concentration n0, (monovalent) ion charge e, Boltzmann constant kB

and temperature T . Because the ions in the diffuse part of the double layer are
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Figure 1. (a) A charged solid surface in an electrolytic solution attracts an oppositely charged
‘screening cloud’ of width ∼ λD . An electric field applied tangent to the charged solid surface
gives rise to an electro-osmotic flow (2.4). (b) An electric field applied to an electrolytic solution
containing a suspended solid particle gives rise to particle motion called electrophoresis, with
velocity equal in magnitude and opposite in direction to (2.4).

approximately in thermal equilibrium, the condition for a ‘small’ charge density (or
zeta-potential) is ζ � kBT /ze.

An externally applied electric field exerts a body force on the electrically charged
fluid in this screening cloud, driving the ions and the fluid into motion. The resulting
electro-osmotic fluid flow (figure 1a) appears to ‘slip’ just outside the screening layer
of width λD . Under a wide range of conditions, the local slip velocity is given by the
Helmholtz–Smoluchowski formula,

us = −εwζ

η
E‖, (2.4)

where η is the fluid viscosity and E‖ is the tangential component of the bulk electric
field.

This basic electrokinetic phenomenon gives rise to two related effects, electro-
osmosis and electrophoresis, both of which find wide application in analytical
chemistry, microfluidics, colloidal self-assembly, and other emerging technologies.
Electro-osmotic flow occurs when an electric field is applied along a channel with
charged walls, wherein the electro-osmotic slip at the channel walls gives rise to plug
flow in the channel, with velocity given by (2.4). Because the electro-osmotic flow
velocity is independent of channel size, (in contrast to pressure-driven flow, which
depends strongly upon channel size), electro-osmotic pumping presents a natural and
popular technique for fluid manipulation in small channels. On the other hand, when
the solid/fluid interface is that of a freely suspended particle, the electro-osmotic slip
velocity gives rise to motion of the particle itself (figure 1b), termed electrophoresis.
In the thin-double-layer limit, the electrophoretic velocity is given by Smoluchowski’s
formula,

U =
εwζ

η
E∞ ≡ µe E∞, (2.5)

where E∞ is the externally applied field, and µe = εwζ/η is the electrophoretic mobility
of the particle.

2.2. Large zeta-potentials

For ‘large’ zeta-potentials, comparable to or exceeding kBT /ze, the exponential profile
of the diffuse charge (2.1) and the linear charge–voltage relation (2.2) are no longer
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valid, but the diffuse part of the double layer remains in thermal equilibrium. As a
result, the potential in the diffuse layer satisfies the Poisson–Boltzmann equation. For
symmetric, binary electrolyte, the classical Gouy–Chapman solution yields a nonlinear
charge–voltage relation for the double layer,

q(ζ ) = 4n0zeλD sinh

(
zeζ

2kBT

)
, (2.6)

in the thin-double-layer limit. This relation may be modified to account for micro-
scopic surface properties, such as a compact Stern layer, a thin dielectric coating, or
Faradaic reactions, which enter via the boundary conditions to the Poisson–Boltzmann
equation. The key point here is simply that q generally grows exponentially with
zeζ/kBT , which has important implications for time-dependent problems involving
double-layer relaxation, as reviewed by Bazant, Thornton & Ajdari (2004).

Remarkably, the Helmholtz–Smoluchowski formula (2.4) for the electro-osmotic
slip remains valid in the nonlinear regime, as long as

λD

a
exp

(
zeζ

2kBT

)
� 1, (2.7)

where a is the radius of curvature of the surface (Hunter 2000). When (2.7) is violated,
ionic concentrations in the diffuse layer differ significantly from their bulk values,
and surface conduction through the diffuse layer becomes important. As a result, the
electrophoretic mobility, µe, becomes a nonlinear function of the dimensionless ratio

Du =
σs

σa
, (2.8)

of the surface conductivity, σs , to the bulk conductivity, σ . Though this ratio was
first noted by Bikerman (1940), we follow Lyklema (1991) in referring to (2.8) as
the ‘Dukhin number’, in honor of Dukhin’s pioneering calculations of its effect on
electrophoresis. We note also that essentially the same number has been called α, β ,
and λ by various authors in the Western literature, and ‘Rel’ by Dukhin (1993).

Bikerman (1933, 1935) made the first theoretical predictions of surface conductance,
σs , taking into account both electromigration and electro-osmosis in the diffuse layer.
The relative importance of the latter is determined by another dimensionless number

m =

(
kBT

ze

)2
2εw

ηD
. (2.9)

Using the result of Deryagin & Dukhin (1969), Bikerman’s formula for σs takes a
simple form for a symmetric binary electrolyte, yielding

Du =
2λD(1 + m)

a

[
cosh

(
zeζ

2kBT

)
− 1

]
= 4

λD(1 + m)

a
sinh2

(
zeζ

4kBT

)
(2.10)

for the Dukhin number. In the limit of infinitely thin double layers, where (2.7) holds,
the Dukhin number vanishes, and the electrophoretic mobility tends to Smoluchow-
ski’s value (2.4). For any finite double-layer thickness, however, highly charged
particles (with ζ > kBT /ze) are generally described by a non-negligible Dukhin
number, and surface conduction becomes important. This leads to bulk concentration
gradients and a non-uniform diffuse-charge distribution around the particle in an
applied field, which modifies its electrophoretic mobility, via diffusiophoresis and
concentration polarization. For more details, the reader is referred to Lyklema (1991)
and Dukhin (1993).
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Figure 2. The evolution of the electric field around a solid, ideally polarizable conducting
cylinder immersed in a liquid electrolyte, following the imposition of a background DC field
at t = 0 (a), where the field lines intersect normal to the conducting surface. Over a charging
time τc = λDa/D, a dipolar charge cloud forms in response to currents from the bulk, reaching
steady state (b) when the bulk field profile is that of an insulator. The resulting zeta-potential,
however, is non-uniform.

3. Induced-charge electro-osmosis: fundamental picture
The standard electrokinetic picture described above involves the interaction of an

applied field and a surface of fixed charge, wherein the electro-osmotic flow is linear
in the applied field. Here we focus on the nonlinear phenomenon of ICEO at a
polarizable (metal or dielectric) surface. As a consequence of nonlinearity, ICEO can
be used to drive steady electro-osmotic flows using AC or DC fields. The nonlinearity
also allows larger fluid velocities and a richer, geometry-dependent flow structure.
These properties stand in stark contrast to classical electro-osmosis described above,
which, e.g., gives zero time-averaged flow in an AC field.

This section gives a physically clear (as well as quantitatively accurate) sense of
ICEO in perhaps the simplest case: an ideally polarizable metal cylinder in a suddenly
applied, uniform electric field. This builds on the descriptions of double-layer polariza-
tion for an uncharged metallic sphere by Levich (1962), Simonov & Shilov (1973)
and Simonov & Shilov (1977) and the associated steady ICEO flow by Gamayunov
et al. (1986). We postpone to § 7 a more detailed and general analysis, justifying the
approximations made here for the case of thin double layers (λD � a) and weak
applied fields (E0a � kBT /ze). Since Du � 1 in these limits, surface conduction and
concentration polarization can be safely ignored, and ICEO becomes the dominant
electrokinetic effect around any inert, highly polarizable object.

3.1. Steady ICEO around an uncharged conducting cylinder

The basic phenomenon of ICEO can be understood from figures 2 and 3. Immediately
after an external field E =E0 ẑ is applied, an electric field is set up so that field lines
intersect conducting surfaces at right-angles (figure 2a). Although this represents the
steady-state vacuum field configuration, mobile ions in electrolytic solutions move in
response to applied fields. A current J = σ E drives positive ions into a charge cloud
on one side of the conductor (z < 0), and negative ions to the other (z > 0), inducing
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Figure 3. The steady-state induced-charge electro-osmotic flow around (a) a conducting
cylinder with zero net charge and (b) a positively charged conducting cylinder. The ICEO
slip velocity depends on the product of the steady field and the induced zeta-potential. The
flow around an uncharged conducting cylinder (a) can thus be understood qualitatively from
figure 2(b), whereas the charged sylinder (b) simply involves the superposition of the standard
electro-osmotic flow.

an equal and opposite surface charge on the conducting surface. A dipolar charge
cloud grows as long as a normal field injects ions into the induced double layer, and
steady state is achieved when no field lines penetrate the double layer (figure 2b). The
tangential field E‖ drives an electro-osmotic slip velocity (2.4) proportional to the
local double-layer charge density, driving fluid from the ‘poles’ of the particle towards
the ‘equator’ (figure 3a). An AC field drives an identical flow, since an oppositely
directed field induces an oppositely charged screening cloud, giving the same net flow.
The ICEO flow around a conducting cylinder with non-zero total charge, shown in
figure 3(b), simply superimposes on the nonlinear ICEO flow of figure 3(a) the usual
linear electro-osmotic flow.

As a concrete example for quantitative analysis, we consider an isolated, uncharged
conducting cylinder of radius a submerged in an electrolyte solution with very small
screening length λD � a. An external electric field E0 ẑ is suddenly applied at t = 0,
and the conducting surface forms an equipotential surface, giving a potential

φ0 = −E0z

(
1 − a2

r2

)
. (3.1)

Electric field lines intersect the conducting surface at right-angles, as shown in
figure 2(a).

Due to the electrolyte’s conductivity σ , a non-zero current J = σ E drives ions to
the cylinder surface. In the absence of electrochemical reactions at the conductor/
electrolyte interface (i.e. at sufficiently low potentials that the cylinder is ‘ideally
polarizable’), mobile solute ions accumulate in a screening cloud adjacent to the solid/
liquid surface, attracting equal and opposite ‘image charges’ within the conductor
itself. Thus the conductor’s surface charge density q – induced by the growing



226 T. M. Squires and M. Z. Bazant

screening cloud – changes in a time-dependent fashion, via

dq(θ)

dt
= j · r̂ = σ E · r̂. (3.2)

Using the linear relationship (2.2) between surface charge density and zeta-potential,
this can be expressed as

dζ (θ)

dt
=

σ

εwκ
E · r̂. (3.3)

A dipolar charge cloud grows, since positively charged ions are driven into the charge
cloud on the side of the conductor nearest the field source (z < 0 in this case), and
negatively charged ions are driven into the charge cloud on the opposite side. As ions
are driven into the screening charge cloud, field lines are expelled and the ionic flux
into the charge cloud is reduced.

The system reaches a steady-state configuration when all field lines are expelled
(r̂ · E(a) = 0). This occurs when the electrostatic potential outside the charge cloud is
given by

φf = −E0z

(
1 +

a2

r2

)
, (3.4)

shown in figure 2(b). The steady-state electrostatic configuration is thus equivalent
to the no-flux electrostatic boundary condition assumed in the analysis of
‘standard’ electrophoresis. In the present case, however, the steady-state configuration
corresponds to a cylinder whose zeta-potential varies with position according to

ζ (θ) = φo − φf (a) = 2E0a cos θ, (3.5)

where we assume the conductor potential φo to vanish. While the steady-state electric
field has no component normal to the charge cloud, its tangential component,

θ̂ · E = −2E0 sin θ, (3.6)

drives an induced-charge electro-osmotic flow, with slip velocity given by (2.4). Now,
however, the (spatially varying) surface potential ζ is given by (3.5). Because the charge
cloud is itself dipolar, the tangential field drives the two sides of the charge cloud
in opposite directions – each side away from the poles – resulting in a quadrupolar
electro-osmotic slip velocity

us = 2U0 sin 2θ θ̂ , (3.7)

where U0 is the natural velocity scale for ICEO,

U0 =
εwE2

0a

η
. (3.8)

One power of E0 sets up the ‘induced-charge’ screening cloud, and the second drives
the resultant electro-osmotic flow.

The fluid motion in this problem is reminiscent of that around a fluid drop of
one conductivity immersed in a fluid of another conductivity subjected to an external
electric field, studied by Taylor (1966). By analogy, we find the radial and azimuthal
fluid velocity components of the fluid flow outside the cylinder to be

ur = 2
a(a2 − r2)

r3
U0 cos 2θ, uθ = 2

a3

r3
U0 sin 2θ. (3.9)

For comparison, analogous results for the steady-state ICEO flow around a sphere,
some of which were derived by Gamayunov et al. (1986), are given in table 1.
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Cylinder Sphere

Initial potential φi −E0z

(
1 − a2

r2

)
−E0z

(
1 − a3

r3

)

Steady-state potential φs −E0z

(
1 +

a2

r2

)
−E0z

(
1 +

a3

2r3

)
Steady-state zeta-potential ζ 2E0a cos θ 3

2
E0a cos θ

Radial flow ur

2a(a2 − r2)

r3
U0 cos 2θ

9a2(a2 − r2)

16r4
U0 (1 + 3 cos 2θ )

Azimuthal flow uθ

2a3

r3
U0 sin 2θ

9a4

8r4
U0 sin 2θ

Charging Timescale τc = λDa/D τs = λDa/D

Induced dipole strength: g(t) for g(t) = 1 − 2 e−t/τc g(t) = 1
2

(
1 − 3 e−2t/τs

)
suddenly applied field E0

g for AC field Re(E0e
iωt ) g =

1 − iωτc

1 + iωτc

g =
1 − iωτs

2 + iωτs

Table 1. Electrostatic and hydrodynamic quantities for the induced-charge electro-osmotic
(ICEO) flow around conducting spheres and cylinders, each of radius a. Here U0 = εwE2

0a/η
is a characteristic velocity scale, and the induced dipole strength g is defined in (4.1). See
Gamayunov et al. (1986) for flows around metal colloidal spheres in steady and AC fields.

Although we focus on the limit of linear screening in this paper, (3.9) should also
hold for nonlinear screening (ζ ≈ kBT /ze) in the limit of thin double layers, as long
as the Dukhin number remains small and (2.7) is satisfied. The relevant zeta potential
in these conditions, however, is not the equilibrium zeta potential (ζ0 = 0) but the
typical induced zeta-potential, ζ ≈ E0a, which is roughly the applied voltage across
the particle.

Finally, although we have specifically considered a conducting cylinder, a similar
picture clearly holds for more general shapes. More generally, ICEO slip velocities
around arbitrarily shaped inert objects in uniform applied fields are directed along
the surface from the ‘poles’ of the object (as defined by the applied field), towards the
object’s ‘equator’.

3.2. Steady ICEO around a charged conducting cylinder

Until now, we have assumed the cylinder to have zero net charge for simplicity. A
cylinder with non-zero equilibrium charge density q0 = Q/4πa2, or zeta-potential, ζ0 =
εwκq0, in a suddenly applied field approaches a steady-state zeta-potential distribution,

ζ (θ) = ζ0 + 2E0a cos θ, (3.10)

which has the induced component in (3.5) added to the constant equilibrium value.
This follows from the linearity of (3.3) with the initial condition, ζ (θ, t = 0) = ζ0. As a
result, the steady-state electro-osmotic slip is simply a superposition of the ‘standard’
electro-osmotic flow due to the equilibrium zeta-potential ζ0,

uQ
s = us − 2

εwζ0

η
sin θ θ̂ , (3.11)
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where us is the ICEO slip velocity, given in (3.7). The associated Stokes flow is a
superposition of the ICEO flow and the ‘standard’ electro-osmotic flow, and is shown
in figure 3(b).

The electrophoretic velocity of a charged conducting cylinder can be found using
the results of Stone & Samuel (1996), from which it follows that the velocity of a
cylinder with prescribed slip velocity us(θ), but no externally applied force, is given
by the surface-averaged velocity,

U = − 1

2π

∫ 2π

0

us(θ) dθ. (3.12)

The ICEO component (3.7) has zero surface average, leaving only the ‘standard’
electro-osmotic slip velocity (3.11). This was pointed out by Levich (1962) using a
Helmholtz model for the induced double layer, and later by Simonov & Dukhin
(1973) using a double-layer structure found by solving the electrokinetic equations.
The conducting cylinder thus has the same electrophoretic mobility µe = εwζ0/η as
an object of fixed uniform charge density and constant zeta-potential. This extreme
case illustrates the result of O’Brien & White (1978) that the electrophoretic mobility
does not depend on electrostatic boundary conditions, even though the flow around
the particle clearly does.

As above, the steady-state analysis of ICEO for a charged conductor is unaffected
by nonlinear screening, as long as (2.7) is satisfied (and Du � 1), where the relevant
ζ is the maximum value, ζ = |ζ0| + |E0a|, including both equilibrium and induced
components.

4. Time-dependent ICEO
A significant feature of ICEO flow is its dependence on the square of the electric

field amplitude. This has important consequences for AC fields: if the direction of the
electric field in the above picture is reversed, so are the signs of the induced surface
charge and screening cloud. The resultant ICEO flow, however, remains unchanged:
the net flow generically occurs away from the poles, and towards the equator.
Therefore, induced-charge electro-osmotic flows persist even in an AC applied fields,
as long as the frequency is sufficiently low that the induced-charge screening clouds
have time to form.

AC forcing is desirable in microfluidic devices, so it is important to examine the
time-dependence of ICEO flows. As above, we explicitly consider a conducting (ideally
polarizable) cylinder and simply quote the analogous results for a conducting sphere
in table 1. Although we perform calculations for the more tractable case of linear
screening, we briefly indicate how the analysis would change for large induced zeta
potentials. Two situations of interest are presented: the time-dependent response of a
conducting cylinder to a suddenly applied electric field (§ 4.1) and to a sinusoidal AC
electric field (§ 4.2). We also comment on the basic time scale for ICEO flows.

4.1. ICEO around a conducting cylinder in a suddenly applied DC field

Consider first the time-dependent response of an uncharged conducting cylinder in
an electrolyte when a uniform electric field E = E0 ẑ is suddenly turned on at t =0.
The dipolar nature of the external driving suggests a bulk electric field of the form

φ(r, t) = −E0z

(
1 + g(t)

a2

r2

)
, (4.1)
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so that initially g(0) = −1 (3.1), and in steady state g(t → ∞) = 1 (3.4). The potential
of the conducting surface itself remains zero, so that the potential drop across the
double layer is given by

φ(a, θ, t) = −ζ (θ) = −q(θ)

εwκ
. (4.2)

Here, as before, we take q to represent the induced surface charge, so that the total
charge per unit area in the charge cloud is −q . The electric field normal to the surface,
found from (4.1), drives an ionic current

J⊥ = −q̇(θ) = −σE0 cos θ(1 − g), (4.3)

into the charge cloud, locally injecting a surface charge density q̇ per unit time. We
express the induced charge density q in terms of the induced dipole g by substituting
(4.1) into (4.2), take a time derivative, and equate the result with q̇ given by (4.3).
This results in an ordinary differential equation for the dipole strength g,

ġ =
σ

εwκa
(1 − g), (4.4)

whose solution is

g(t) = 1 − 2 e−t/τc . (4.5)

Here τc is the characteristic time for the formation of induced-charge screening clouds,

τc =
κaεw

σ
=

λDa

D
, (4.6)

where the definitions of conductivity (σ = 2n0e
2D/kBT ) and screening length (2.3)

have been used.
The induced-charge screening cloud (with equivalent zeta-potential given by (4.2))

is driven by the tangential field (derived from (4.1)) in the standard way (2.4), resulting
in an induced-charge electro-osmotic slip velocity

us = 2U0 sin 2θ
(
1 − e−t/τc

)2
θ̂ . (4.7)

More generally, the time-dependent slip velocity around a cylinder with a non-zero
fixed charge (or equilibrium zeta-potential ζ0) can be found in similar fashion, and
results in the standard ICEO slip velocity us (4.7) with an additional term representing
standard electro-osmotic slip (3.11)

uQ
s = us − 2

εwζ0

η
sin θ

(
1 − e−t/τc

)
θ̂ . (4.8)

Note that (4.8) grows more quickly than (4.7) initially, but that ICEO slip eventually
dominates in strong fields, since it varies with E2

0 , versus E0 for the standard electro-
osmotic slip.

4.2. ICEO around a conducting cylinder in a sinusoidal AC field

An analogous calculation can be performed in a straightforward fashion for sinusoidal
applied fields. Representing the electric field using complex notation, E = E0 eiωt ẑ,
where the real part is implied, we obtain a time-dependent zeta-potential

ζ = 2E0a cos θRe

(
eiωt

1 + iωτc

)
, (4.9)



230 T. M. Squires and M. Z. Bazant

giving an induced-charge electro-osmotic slip velocity

us = 2U0 sin 2θ

[
Re

(
eiωt

1 + iωτc

)]2

θ̂ , (4.10)

with time-averaged slip velocity

〈us〉 =
U0 sin 2θ(
1 + ω2τ 2

c

) θ̂ . (4.11)

In the low-frequency limit ωτc � 1, the double layer fully develops in phase with the
applied field. In the high-frequency limit ωτc 
 1, the double layer does not have time
to charge up, attaining a maximum magnitude (ωτc)

−2 with a π/2 phase shift. Note
that this analysis assumes that the double layer changes quasi-steadily, which requires
ω � τ−1

D .

4.3. Time scales for ICEO flows

Before continuing, it is worth emphasizing the fundamental time scales arising in
ICEO. The basic charging time τc exceeds the Debye time for diffusion across the
double-layer thickness, τD = λ2

D/D = εw/σ , by a geometry-dependent factor, a/λD ,
that is typically very large. τc is also much smaller than the diffusion time across the
particle, τa = a2/D. The appearance of this time scale for induced dipole moment of
a metallic colloidal sphere has been explained by Simonov & Shilov (1977) using a
simple RC-circuit analogy, consistent with the detailed analysis of Simonov & Shilov
(1973). The same time scale, τc, also arises as the inverse frequency of AC electro-
osmosis (Ramos et al. 1999) or AC pumping (Ajdari 2000) at a micro-electrode
array of characteristic length a, where again an RC-circuit analogy has been invoked
to explain the charging process. This simple physical picture has been criticized by
Scott, Kaler & Paul (2001), but Ramos et al. (2001) and Gonzalez et al. (2000) have
convincingly defended its validity, as in the earlier Russian papers on polarizable
colloids.

Although it is apparently not well-known in microfluidics and colloidal science, the
time scale for double-layer relaxation was debated and analysed in electrochemistry
in the middle of the last century, after Ferry (1948) predicted that τD should be the
charging time for the double layer at an electrode in a semi-infinite electrochemical
cell. Buck (1969) explicitly corrected Ferry’s analysis to account for bulk conduction,
which introduces the macroscopic electrode separation a. The issue was definitively
settled by Macdonald (1970) who explained the correct charging time, τc, as the ‘RC

time’ for the double-layer capacitor, C = εw/λD , coupled to a bulk resistor, R = a/σ .
Similiar ideas were also developed independently a decade later by Kornyshev &
Vorotyntsev (1981) in the context of solid electrolytes.

Ferry’s model problem of a suddenly imposed surface charge density in a semi-
infinite electrolyte (as opposed to a suddenly imposed voltage or background field in
a finite system) persists in recent textbooks on colloidal science, such as Hunter (2000)
and Lyklema (1991), and only the time scales τD and τa are presented as relevant
for double-layer relaxation. This is quite reasonable for non-polarizable colloidal
particles, but we stress that the intermediate RC time scale, τc =

√
τDτa , plays a

central role for polarizable objects that exhibit significant double-layer charging.
We also mention nonlinear screening effects at large applied fields or large total

charges, where the maximum total zeta-potential, ζ ≈ ζ0 + E0a, exceeds kBT /ze. The
analysis of this section can be generalized to account for the ‘weakly nonlinear’ limit
of thin double layers, where ζ > kBT /ze, but (2.7) is still satisfied (and thus Du � 1 as
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well). In the absence of surface conduction, (3.2) still describes double-layer relaxation,
but a nonlinear charge–voltage relation, such as (2.6) from Gouy–Chapman theory,
must be used. In that case, the time-dependent boundary condition (3.3) on the
cylinder is replaced by

CD(ζ )
dζ

dt
= σ E · r̂, (4.12)

where

CD(ζ ) =
εw

λD

cosh

(
zeζ

2kBT

)
(4.13)

is the nonlinear differential capacitance of the double layer.
If the induced component of the zeta-potential is large, due to a strong applied field,

E0a > kBT /ze, the charging dynamics in (4.12) are no longer analytically tractable.
Since the differential capacitance CD(ζ ) increases with |ζ | in any thin-double-layer
model, the ‘poles’ of the cylinder along the applied field charge more slowly than the
sides. However, the steady-state field is the same as for linear screening, as long as
Du � 1 .

If the applied field is weak, but the total charge is large (ζ0 >kBT/ze), (4.12) may
be linearized to obtain the same polarization dynamics and ICEO flow as for Du � 1.
However, the ‘RC time’,

τc(ζ0) = RCD = τc cosh

(
zeζ0

2kBT

)
, (4.14)

increases nonlinearly with ζ0, as shown by Simonov & Shilov (1977). The same time
constant, with ζ0 replaced by ζ0 + E0a, also describes the late stages of relaxation in
response to a strong applied field.

Some implications for ICEO at large voltages in the ‘strongly nonlinear’ limit of thin
double layers, where condition (2.7) is violated and Du 
 1, are discussed in § 7.5. In
this regime, the simple circuit approximation breaks down due to bulk diffusion, and
secondary relaxation occurs at the slow time scale, τa = a2/D. For an interdisciplinary
review and detailed analysis of double-layer relaxation (without surface conduction
or flow), the reader is referred to Bazant et al. (2004).

Finally, we note that the oscillatory component of ICEO flows may not obey the
quasi-steady Stokes equations, due to the finite time scale, τv = a2/ν, for the diffusion
of fluid vorticity. (Here ν = η/ρ is the kinematic viscosity and ρ the fluid density.)
It is customary in microfluidic and colloidal systems to neglect the unsteady term,
ρ∂u/∂t , in the Stokes equations, because ions diffuse more slowly than vorticity by a
factor of D/ν ≈ 10−3. However, the natural time scale for the AC component of AC
electro-osmotic flows is τc = λDa/D, so the importance of the unsteady term in the
Stokes equations is governed by the dimensionless parameter

τv

τc

=
a

λD

D

ν
. (4.15)

This becomes significant for sufficiently thin double layers, λD/a ≈ 10−3. Therefore,
in AC electro-osmosis and other ICEO phenomena with AC forcing at the charging
frequency, ωc = τ−1

c , vorticity diffusion confines the oscillating component of ICEO
flow to an oscillatory boundary layer of size

√
νλDa/D. However, the steady com-

ponent of ICEO flows is usually the most important, and obeys the steady Stokes
equations.



232 T. M. Squires and M. Z. Bazant

5. ICEO in microfluidic devices
We have thus far considered isolated conductors in background fields applied

‘at infinity’, as is standard in the colloidal context. The further richness of ICEO
phenomena becomes apparent in the context of microfluidic devices. In this section,
we consider ICEO in which the external field is applied by electrodes with finite,
rather than infinite, separation. Furthermore, microfluidic devices allow additional
techniques not available for colloids: the ‘inducing surface’ can be held in place
and its potential can be actively controlled. This gives rise to ‘fixed-potential’ ICEO,
which is to be contrasted with the ‘fixed-total-charge’ ICEO studied above. Finally,
we present a series of simple ICEO-based microfluidic devices that operate without
moving parts in AC fields.

5.1. Double-layer relaxation at electrodes

As emphasized above, one must drive a current J0(t) = σE0(t) to apply an electric
field E0(t) in an homogeneous electrolyte. The electrochemical reactions associated
with steady Faradaic currents may cause fluid contamination by reaction products or
electrodeposits, unwanted concentration polarization, or permanent dissolution (and
thus irreversible failure) of microelectrodes. Therefore, oscillating voltages and non-
Faradaic displacement currents at ‘blocking’ electrodes are preferable in microfluidic
devices. In this case, however, one must take care that diffuse-layer charging at the
electrodes does not screen the field.

We examine the simplest case here, which involves a device consisting of a thin
conducting cylinder of radius a 
 λD placed between flat, inert electrodes separated
by 2L 
 2a. The cylinder is electrically isolated from the rest of the system, so that
its total charge is fixed. Under a suddenly applied DC voltage, 2V0, the bulk electric
field, E0(t), decays to zero as screening clouds develop at the electrodes. For weak
potentials (V0 � kBT /e) and thin double layers (λD � a � L), the bulk field decays
exponentially

E0(t) =
V0

L
e−t/τe , (5.1)

with a characteristic electrode charging time

τe =
λDL

D
, (5.2)

analogous to the cylinder’s charging time (4.6). This time-dependent field E0(t) then
acts as the ‘applied field at infinity’ in the ICEO slip formula, (4.7).

The ICEO flow around the cylinder is set into motion exponentially over the
cylinder charging time, τc = λDa/D, but is terminated exponentially over the (longer)
electrode charging time, τe = λDL/D as the bulk field is screened at the electrodes.
This interplay between two time scales – one set by the geometry of the inducing
surface and another set by the electrode geometry – is a common feature of ICEO in
microfluidic devices.

This is clearly seen in the important case of AC forcing by a voltage, V0 cos(ωt), in
which the bulk electric field is given by

E0(t) =
V0

L
Re

(
iωτe

1 + iωτe

e−iωt

)
. (5.3)

Electric fields persist in the bulk solution when the driving frequency is high enough
(ωτe 
 1) that induced double layers do not have time to develop near the electrodes.
Induced-charge electro-osmotic flows driven by applied AC fields can thus persist
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Material properties of aqueous solution
Dielectric constant εw ≈ 80ε0 7 × 10−5 g cm V−2 s−2

Viscosity η 10−2 g cm−1 s−1

Ion diffusivity Di 10−5 cm2 s−1

Experimental parameters
Screening length λD 10 nm
Cylinder radius a 10 µm
Applied field E0 100 V cm−1

Electrode separation L 1 cm

Characteristic scales
Slip velocity U0 = εwE2

0a/η 0.7 mm s−1

Cylinder charging time τc = λDa/Di 10−4 s
Electrode charging time τe = λDL/Di 10−1 s
Dimensionless surface potential Ψ = eE0a/kBT 3.9
Dukhin number Du 10−2

Table 2. Representative values for induced-charge electro-osmosis in a microfluidic device.

only in a certain band of driving frequencies, τ−1
e � ω � τ−1

c , unless Faradaic reactions
occur at the electrodes to maintain the bulk field. In AC electro-osmosis at adjacent
surface electrodes (Ramos et al. 1999) or AC pumping at an asymmetric electrode
array (Ajdari 2000), the inducing surfaces are the electrodes, and so the two time
scales coincide to yield a single characteristic frequency ωc = 1/τe. (Note that Ramos
et al. (1999) and Gonzalez et al. (2000) use the equivalent form ω ∼ σλD/εwL.)

Table 2 presents typical values for ICEO flow velocities and charging time scales
for some reasonable microfluidic parameters. For example, an applied electric field
of strength 100 V cm−1 across an electrolyte containing a 10 µm cylindrical post gives
rise to an ICEO slip velocity of order 1 mm s−1, with charging times τc ∼ 0.1 ms and
τe = 0.1 s.

5.2. Fixed-potential ICEO

In the above examples, we have assumed a conducting element which is electrically
isolated from the driving electrodes, which constrains the total charge on the
conductor. Another possibility involves fixing the potential of the conducting surface
with respect to the driving electrodes, which requires charge to flow onto and off the
conductor. This ability to directly control the induced charge allows a wide variety of
microfluidic pumping strategies exploiting ICEO.

Perhaps the simplest example of fixed-potential ICEO involves a conducting cylinder
of radius a which is held in place at a distance h from the nearest electrode (figure 4a).
For simplicity, we consider a � h and h � L. We take the cylinder to be held at some
potential Vc, the nearest electrode to be held at V0, the other electrode at V = 0,
and assume the electrode charging time τe to be long. In this case, the bulk field
(unperturbed by the conducting cylinder) is given simply by E0 = V0/L, and the
‘background’ potential at the cylinder location is given by φ(h) = V0(1 − h/L). In
order to maintain a potential Vc, an average zeta-potential,

ζi = Vc − V0

(
1 − h

L

)
, (5.4)

is induced via a net transfer of charge per unit length of λi = 2πεwκaζi , along with
an equally and oppositely charged screening cloud.
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Figure 4. Fixed-potential ICEO. (a) A cylinder of radius a is held a distance h 
 a from a
nearby electrode and held at the same electrostatic potential V0 as the electrode. A second
electrode is located a distance L away and held at zero potential, so that a field E0 ≈ V0/L is
established. (b) Leading-order fixed-potential ICEO flow for the system in (a). Like fixed-charge
ICEO, a non-zero steady flow can be driven with an AC voltage.

This induced screening cloud is driven by the tangential electric field (3.6) in the
standard way, giving a fixed-potential ICEO flow with slip velocity

uFP
s = us + 2

εw

η

V0

L
sin θ

(
Vc − V0 +

V0h

L

)
θ̂ , (5.5)

where us is the quadrupolar ‘fixed-total-charge’ ICEO flow us from (3.7) and (3.8),
with E0 = V0/L. Note that both the magnitude and direction of the flow can be
controlled by changing the position h or the potential Vc of the inducing conductor.
A freely suspended cylinder would move with an electrophoretic velocity

UE =
dh

dt
=

εw

η

V0

L

(
Vc − V0 +

V0h

L

)
=

h − hc

a
U0, (5.6)

away from the position hc = L(1 − Vc/V0) where its potential is equal to the (unper-
turbed) background potential. The velocity scale is the same as for fixed-total-charge
ICEO, although the cylinder–electrode separation h, rather than the cylinder radius
a, provides the geometric length scale. Since typically h 
 a, fixed-potential ICEO
velocities are larger than fixed-total-charge ICEO for the same field.

To hold the cylinder in place against UE , however, a force is required. Following
Jeffrey & Onishi (1981), the force FE is given approximately by

FE =
4πηUE

log[(h +
√

h2 − a2)/a] −
√

h2 − a2/a
≈ 4πηUE

log (2h/a) − 1
, (5.7)

and is directed toward hc. The fixed-potential ICEO flow around a cylinder held
in place at the same potential as the nearest electrode (Vc = V0, hc =0) is shown in
figure 4(b). The leading-order flow consists of a Stokeslet of strength FE plus its
images, following Liron & Blake (1981). The (quadrupolar) fixed-total-charge ICEO
flow exists in addition to the flow shown, but is smaller by a factor a/h and is thus
not drawn.



Induced-charge electro-osmosis 235

Figure 5. ICEO micropump designs for ‘cross-’, ‘elbow-’, and ‘T-’ junctions. A conducting
cylinder placed in a junction of microchannels, subject to an applied AC or DC field, drives
an ICEO flow which draws fluid in along the field axis and expels it perpendicular to the
field axis. For the four-electrode configurations, the field axis can be switched from vertical
to horizontal by switching the polarities of two diagonally opposite electrodes, reversing the
pumping direction.

With the ability to actively control the potential of the ‘inducing’ surface, fixed-
potential ICEO flows afford significant additional flexibility over their fixed-total-
charge (and also colloidal) counterparts. Note that in a sense, there is little distinction
between ‘inducing’ conductors and blocking electrodes. Both impose voltages, undergo
time-dependent screening, and may drive ICEO flows. Furthermore, their sensitivity
to device geometry and nonlinear dependence on applied fields open intriguing
microfluidic possibilities for ICEO flows – both fixed total charge and fixed potential.

5.3. Simple microfluidic devices exploiting ICEO

Owing to the rich variety of their associated phenomena, ICEO flows have the poten-
tial to add a significant new technique to the microfluidic toolbox. Below, we present
several ideas for microfluidic pumps and mixers based on simple ICEO flows around
conducting cylinders. The devices typically consist of strategically placed metal wires
and electrodes. As such, they can be easily fabricated and operate with no moving
parts under AC applied electric fields. AC fields have several advantages over DC
fields: (i) electrode reactions are not required to apply AC fields, thus eliminating the
concentration and pH gradients, bubble formation and metal ion injection that can
occur with DC fields, and (ii) strong fields can be created by applying small voltages
over small distances. For ease of analysis, we assume the cylinders to be long enough
that the flow is effectively two-dimensional.

5.3.1. Junction pumps

The simplest ICEO-based devices follow natually from the symmetry of ICEO flows,
which generally draw fluid in along the field axis and eject it radially. This symmetry
can be exploited to drive fluid around a corner where two, three, or four micro-
channels converge at right-angles, as shown in figure 5. These DC or AC electro-
osmotic pumps are reversible: changing the polarity of the four electrodes (shown for
the elbow- and cross-junctions in the figure) so as to change the field direction by 90◦

reverses the sense of pumping.
For variety, we give an alternative design for the T-junction pump, which uses a

conducting plate embedded in the channel wall between the electrodes and cannot
be reversed. A reversible T-junction, similar to the cross- and elbow-junctions, could
easily be designed. The former design, however, can be modified to reduce the
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Figure 6. AC electro-osmotic mixers. Diffusive mixing in a background flow is enhanced by
the ICEO convection rolls produced by (a) an array of conducting posts in a transverse AC field,
and (b) conducting objects (or coatings) embedded in channel walls between micro-electrodes
applying fields along the flow direction.

detrimental effects of viscous drag by having the metal plate wrap around to the top
and bottom walls (not shown), in addition to the sidewall. In general, placing the
‘inducing conductor’ driving ICEO flow on a channel wall is advantageous because
it eliminates an inactive surface that would otherwise contribute to viscous drag.

The pressure drop generated by an ICEO junction pump can be estimated on
dimensional grounds. The natural pressure scale for ICEO is P ∼ ηU0/a ∼ εwE2

0 , and
the pressure decays with distance like (a/r)2. Thus a device driven by a cylinder
of radius a in a junction with channel half-width W creates a pressure head of
order �P ∼ εwE2

0a
2/W 2. For the specifications listed in table 2, this corresponds

to a pressure head on the order of mPa. This rather small value suggests that
straightforward ICEO pumps are better suited for local fluid control than for driving
fluids over significant distances.

5.3.2. ICEO micro-mixers

As discussed above, rapid mixing in microfluidic devices is not trivial, since inertial
effects are negligible and mixing can only occur by diffusion. Chaotic advection (Aref
1984) provides a promising strategy for mixing in Stokes flows, and various techniques
for creating chaotic streamlines have been introduced (e.g. Liu et al. 2000; Stroock
et al. 2002). ICEO flows provide a simple method to create micro-vortices, and could
therefore be used in a pulsed fashion to create unsteady two-dimensional flows with
chaotic trajectories.

In figure 6(a), we present a design for an ICEO mixer in which a background
flow passes through an array of transverse conducting posts. An AC field in the
appropriate frequency range (τ−1

W � ω � τ−1
a ) is applied perpendicular to the posts and

to the mean flow direction, which generates an array of persistent ICEO convection
rolls. Note that the radius of the posts in the mixer should be smaller than shown
(a � W ) to validate the simple approximations made above, where a ‘background’
field is applied to each post in isolation. However, larger posts as shown could have
useful consequences, as the final field is amplified by focusing into a smaller region.
We leave a careful analysis of such issues for future work.

The same kind of convective mixing could also be produced by a different design,
illustrated in figure 6(b), in which an AC (or DC) field is applied along the channel
with metal stripes embedded in the channel walls. As with the posts described above,
the metal stripes are isolated from the electrodes applying the driving field. This
design has the advantage that it drives flow immediately adjacent to the wall, which
reduces ‘dead space’.
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Figure 7. Fixed-potential ICEO pumps (a) and mixers (b) can be constructed by electrically
coupling the ‘inducing conductor’, which may be a post (as shown) or a surface pattern (not
shown), to one set of electrodes. These devices generalize ‘AC electro-osmosis’ in flat-surface
electrodes arrays to other situations, with different flow patterns and frequency responses.

5.3.3. Devices exploiting fixed-potential ICEO

By coupling the potential of the posts or plates in the devices above to the electrodes,
fixed-potential ICEO can be exploited to generate net pumping past the posts. For
example, in the cross-junction pump of figure 5, if the central post were grounded
to one of the pairs of electrodes, there would be an enhanced flow sucking fluid in
from the channel between the electrode pair (with an AC or DC voltage). Likewise,
a fixed-potential ICEO linear pump can be created in the middle of a channel, as
shown in figure 7(a).

To estimate the flow generated by the single-post device, we note that the post
in figure 7(a), if freely suspended, would move with velocity UE ∼ εwV 2

0 h/ηL2 down
the channel. The post is held in place, however, which requires a force (per unit
length) F‖ ∼ 4πηUE/(log(W/a) − 0.9) (Happel & Brenner 1983). The resulting flow
rate depends on the length of the channel; however, the pressure required to stop
the flow does not. This can be estimated using a two-dimensional analogue of the
calculation of Brenner (1958) for the pressure drop due to a small particle in a
cylindrical tube, giving a pressure drop �P ∼ 3F‖/4W . This pressure drop is larger
than that for the fixed-total-charge ICEO junction pumps by a factor of O(hW 3/a2L2).
Furthermore, multiple fixed-potential ICEO pumps could be placed in series. When
the post is small (a � W, L), these pumps operate in the same frequency range,
τ−1
W <ω <τ−1

c , as the junction pumps above.
Clearly, many other designs are possible, which could provide detailed flow control

for pumping or micro-vortex generation. For example, fixed-potential ICEO can also
be used in a micromixer design, as shown in figure 7(b), wherein rolls the size of
the channel can be established. An interesting point is that the frequency response
of the ICEO flow is sensitive to both the geometry and the electrical couplings. We
leave the design, optimization, and application of real devices for future work, both
experimental and theoretical.

We close this section by comparing these new kinds of devices with previous
examples of ICEO in microfluidic devices, which involve quasi-planar micro-electrode
arrays to produce ‘AC electro-osmosis’ (Ramos et al. 1999; Ajdari 2000). As noted
above, when the potential of the ‘inducing conductor’ (post, stripe, etc.) is coupled to
the external circuit, it effectively behaves like an electrode, so fixed-potential ICEO
is closely related to AC electro-osmosis. Of course, it shares the same fundamental
physical mechanism, which we call ‘ICEO’, as related effects in polarizable colloids
that do not involve electrodes. Fixed-potential ICEO devices, however, represent a
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Ew

Conductor φ = 0

Edλd

λD
Screening cloud εw

Dielectric layer εd

Figure 8. A dielectric layer of thickness λd and permittivity εd coating a conductor. The
potential drop between the external potential φ∞ and 0 at the conductor occurs in two steps:
�φd = Edλd across the dielectric and �φw ≈ EwλD across the double layer.

significant generalization of AC electro-osmotic planar arrays, because a non-trivial
distinction arises between ‘electrode’ (applying the field) and ‘inducing conductor’
(producing the primary ICEO flow) in multi-dimensional geometries. This allows a
considerable variety of flow patterns and frequency responses. In contrast, existing
devices using AC electro-osmosis peak at a single frequency and produce very similar
flows (Ramos et al. 1998, 1999; Brown et al. 2001; Studer et al. 2002; Mpholo et al.
2003).

6. Surface contamination by a dielectric coating
The above examples have focused on an idealized situation with a clean metal

surface. In this section, we examine the effect of a non-conducting dielectric layer
which coats the conductor, and find that any dielectric layer which is thicker than the
screening length λD significantly reduces the strength of the ICEO flow. Furthermore,
the ICEO flow around a dielectric object, rather than a perfectly conducting object as
we have discussed so far, is presented as a limiting case of the analysis in this section.

We start with a simple physical picture to demonstrate the basic effect of a thin
dielectric layer. Consider a conducting cylinder of radius a coated with a dielectric
layer of thickness λd � a (so that the surface looks locally planar) and permeability
εd , as shown in figure 8. In steady state, the potential drop from the conducting
surface φ =0 to the potential φ∞ outside the double layer occurs across in two steps:
across the dielectric (where E = Ed), and across the screening cloud (where E = Ew),
so that

Edλd + EwλD = φ∞. (6.1)

The electric fields in the double layer and in the dielectric layer are related via
εdEd = εwEw , so that (

1 +
εw

εd

λd

λD

)
EwλD = φ∞. (6.2)

Since EwλD is approximately the potential drop ζ across the double layer, and since
the steady-state bulk potential is given by (3.4) to be φ∞ = 2E0a cos θ , we find the
induced-charge zeta-potential to be

ζ =
2E0a cos θ

1 + εwλd/εdλD

. (6.3)

Thus unless the layer thickness λd is much less than εdλD/εw , the bulk of the potential
drop φ∞ occurs across the dielectric layer, instead of the double layer, resulting in a
reduced electro-osmotic slip velocity.
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The modification to the charging time τc for the coated cylinder can likewise be
understood from this picture. The dielectric layer represents an additional (parallel-
plate) capacitor of separation λd and filled with a dielectric εd , in series with the
capacitive screening cloud, giving a total capacitance

CT =
εw

λD

(
1 +

εwλd

εdλD

)−1

, (6.4)

and a modified RC time

τc =
λDa

D

(
1 +

εwλd

εdλD

)−1

, (6.5)

as found by Ajdari (2000) for a similar calculation for a compact (Stern) layer. A
discussion of double-layer capacitance in the nonlinear regime, where the compact
layer is approximated by a thin dielectric layer is given by Macdonald (1954).

A full calculation of the induced zeta-potential around a dielectric cylinder of
radius a coated by another dielectric layer with outer radius b and thickness (b −a) is
straightforward although cumbersome. (Note that the analogous problem for a coated
conducting sphere was treated by Dukhin (1986) as a model of a dead biological cell.)
The resulting induced-charge zeta-potential is

ζ =
2bE0(1 + Γc) cos θ

2 + κb(1 − Γc)
, (6.6)

with characteristic charging time scale

τc =
λDb

D

[
1 +

κb

2
(1 − Γc)

]−1

, (6.7)

where Γc is defined to be

Γc =
b2 + a2 − εw/εd(b

2 − a2)

b2 + a2 + εw/εd(b2 − a2)
. (6.8)

It is instructive to examine limiting cases of the induced zeta-potential (6.6). In the
limit of a ‘conducting’ dielectric coating εd/εw → ∞, we recover the standard result
for ICEO around a metal cylinder, as expected. In the limit of a thin dielectric layer
b = a + λd , where λd � a, the induced zeta-potential is given by

ζ (λd � a) ≈ 2bE0 cos θ

1 + λdεw/λDεd

, (6.9)

as found in (6.3), with a charging time

τc(λd � a) ≈ λDb

D

(
1 +

εwλd

εdλD

)−1

, (6.10)

as found in (6.5). Therefore, the ICEO slip velocity around a coated cylinder is close
to that of a clean conducting cylinder (ζ = 2bE0 cos θ) only when the dielectric layer
is much thinner than the screening length times the dielectric contrast, λd � λDεd/εw .
The zeta-potential induced around a conducting cylinder with a thicker dielectric
layer,

ζ (λd 
 λD) ≈ 2bE0

εdλD

εwλd

cos θ, (6.11)
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is smaller by a factor of O(λD/λd), and the charging time,

τc(λd 
 λD) ≈ εwλD

εdλd

λDb

D
, (6.12)

is likewise shorter by a factor of O(λD/λd). As a result, strong ICEO flow requires a
rather clean and highly polarizable surface, with minimal non-conducting deposits.

Note that the limit of a pure dielectric cylinder of radius b is found by taking the
limit a → 0. This gives a zeta-potential of

ζ (a = 0) → 2bE0 cos θ

1 + εwb/εdλD

≈ 2
εd

εw

E0λD cos θ, (6.13)

and an ICEO slip velocity which is smaller than the conducting case (3.7) by O(λD/b).
The charging time for a dielectric cylinder is given by

τc(a = 0) ≈ εw

εd

λ2
D

D
, (6.14)

as expected from (6.5) in the limit λd 
 λD .

7. Induced-charge electro-osmosis: systematic derivation
In this section, we provide a systematic derivation of induced-charge electro-

osmosis, in order to complement the physical arguments above. We derive a set of
effective equations for the time-dependent ICEO flow around an arbitrarily shaped
conducting object, and indicate the conditions under which the approximations made
in this article are valid. Starting with the usual ‘electrokinetic equations’ for the
electrostatic, fluid, and ion fields (as given by, e.g., Hunter 2000), we propose an
asymptotic expansion that matches an inner solution (valid within the charge cloud)
with an outer region (outside the charge cloud), and that accounts for two separate
time scales – the time for the charge cloud to locally equilibrate and the time scale
over which the external electric field changes.

Although it has mainly been applied to steady-state problems, the method of
matched asymptotic expansions is well-established in this setting, where it is commonly
called the ‘thin double layer approximation’. For simplicity, like many authors, we
perform our analysis for the case of a symmetric binary electrolyte with a single ionic
diffusivity in a weak applied field, and we compute only the leading-order uniformly
valid approximation. The same simplifying assumptions were also made by Gonzalez
et al. (2000) in their recent asymptotic analysis of AC electro-osmosis.

In the phenomenological theory of diffuse charge in dilute electrochemical systems,
the electrostatic field obeys Poisson’s equation,

∇2φ = − (n+ − n−)e

εw

, (7.1)

where n± represent the local number densities of positive and negative ions. These
obey conservation equations

∂n±

∂t
+ ∇ · (n±v±) = 0, (7.2)

where v± represent the velocities of the two ion species,

v± = ∓be∇φ − kBT b∇ log n± + u, (7.3)
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where b is the mobility of the ions in the solvent and u is the local fluid velocity.
Terms in (7.3) represent ion motion due to (a) electrostatic forcing, (b) diffusion down
density gradients, and (c) advection with the local fluid velocity. The fluid flow obeys
the Stokes equations, with body force given by the product of the charge density and
the electric field,

η∇2u − ∇p = e(n+ − n−)∇φ, (7.4)

along with incompressibility. Strictly speaking, this form does not explicitly include
osmotic pressure gradients, as detailed below. However, osmotic forces can be
absorbed into a modified pressure field p, and the resulting flow is unaffected.

For boundary conditions on the surface Γ of the conductor, we require the fluid
flow to obey the no-slip condition, the electric potential to be an equipotential (with
equilibrium zeta-potential ζ0), and the ions to obey a no-flux condition:

u(Γ ) = 0, (7.5)

φ(Γ ) = ζ0, (7.6)

n̂ · v±(Γ ) = 0, (7.7)

where n̂ represents the (outer) normal to the surface Γ . Far from the object, we
require the fluid flow to decay to zero, the electric field to approach the externally
applied electric field, and the ion densities n± to approach their constant (bulk) value
n0.

In order to simplify these equations, we insert (7.3) in (7.2), and take the sum and
difference of the resulting equations for the two ion species to obtain

ċρ + Dκ2cρ − D∇2cρ − eb∇ · [ce∇φ] + u · ∇cρ = 0, (7.8)

ċe − D∇2ce − eb∇ · [cρ∇φ] + u · ∇ce = 0, (7.9)

where we have used (7.1) and where we have defined

ce = n+ + n− − 2n0, (7.10)

cρ = n+ − n−. (7.11)

The first variable, ce, represents the excess total concentration of ions, while the
second, cρ , is related to the charge density via cρ = ρ/e. The first three terms in
(7.8) represent a (possible) transient, electrostatic transport, and diffusive transport,
respectively, and will be seen to give the dominant balance in the double layer. The
next term represents the divergence of a flux of excess ionic concentration ce (but not
excess charge) due to an electric field. The final term represents ion advection with
the fluid flow u. The analogous (7.9) for the charge-neutral ce lacks the electrostatic
transport term. Both ce and cρ decay away from the solid surface and obey the
no-flux boundary conditions (7.7),

n̂ · ∇cρ |Γ = − e

kBT
(2n0 + ce)n̂ · ∇φ|Γ , (7.12)

n̂ · ∇ce|Γ = − e

kBT
cρ n̂ · ∇φ|Γ , (7.13)

at the surface Γ .
In what follows, we obtain an approximate solution to the governing equations

(7.1), (7.8), and (7.9), at the leading order in a matched asymptotic expansion. We first
analyse the solution in the ‘inner’ region within a distance of order λD of the surface.
Non-dimensionalization yields a set of approximate equations for the inner region
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and a set of matching boundary conditions which depend on the ‘outer’ solution,
valid in the quasi-neutral bulk region (farther than λD from the surface). Similarly,
approximate equations and effective boundary conditions for the outer region are
found. By solving the inner problem and matching to the outer problem, a set of
effective equations is derived for time-dependent, bulk ICEO flows.

7.1. Non-dimensionalization and ‘inner’ region

We begin by examining the ‘inner region’, adjacent to the conducting surface. Denoting
non-dimensional variables in the inner region with tildes, we scale variables as follows:

r =λD r̃, t =(κ2D)−1 t̃ , φ =Φ0φ̃, u =U0ũ, cρ =2n0Ψ c̃ρ, ce = 2n0Ψ
2c̃e, E = E0 Ẽ

(7.14)

where Φ0 and U0 are potential and velocity scales (left unspecified for now), and
where we have introduced the dimensionless surface potential,

Ψ =
eΦ0

kBT
. (7.15)

Note that c̃e scales with Ψ 2 to satisfy the dominant balance in (7.9). Finally, we have
scaled time with the Debye time, τD =(κ2D)−1 = λ2

D/D, although the analysis will
dictate another time scale, as expected from the physical arguments above.

The dimensionless ion conservation equations (7.8–7.9) become

∂c̃ρ

∂t̃
+ c̃ρ − ∇̃2

c̃ρ − Ψ 2∇̃ · [c̃e∇̃φ̃] − Pe ũ · ∇̃c̃ρ = 0, (7.16)

∂c̃e

∂t̃
+ ∇̃2

c̃e + ∇̃ · [c̃ρ∇̃φ̃] − Pe ũ · ∇̃c̃e = 0, (7.17)

where we have introduced the Péclet number,

Pe =
U0

κD
. (7.18)

The boundary conditions (7.12)–(7.13) in non-dimensional form are given by

n̂ · ∇̃c̃ρ |Γ = −(1 + Ψ 2c̃e)n̂ · ∇̃φ̃|Γ , (7.19)

n̂ · ∇̃c̃e|Γ = −c̃ρ n̂ · ∇̃φ̃|Γ . (7.20)

In the analysis that follows, we concentrate on the simplest limiting case. We
assume the screening length to be much smaller than any length L0 associated with
the surface geometry, parametrized through

ε = (κL0)
−1 = λD/L0 � 1, (7.21)

so that the screening cloud ‘looks’ locally planar. As mentioned above, the singular
limit of thin double layers, ε � 1, is the usual basis for the matched asymptotic
expansion. The regular limit of small Péclet number, Pe � 1, which holds in almost
any situation, is easily taken by setting Pe=0. Finally, we consider the regular limit
of small (dimensionless) surface potential, Ψ � 1, which is the same as the limit that
allows the Poisson–Boltzmann equation to be linearized. With these approximations,
the system is significantly simplified. First, c̃ρ is coupled to c̃e only through terms of
O(Ψ 2) in (7.16) and boundary condition (7.19). Second, c̃e is smaller than c̃ρ by a
factor Ψ , and is thus neglected: c̃ρ = 0 + O(Ψ 2).
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In this limit, we obtain the linear Debye equation and boundary condition for c̃ρ

alone:

∂c̃ρ

∂t̃
+ c̃ρ = ε2∇̃2

c̃ρ, (7.22)

n̂ · ∇̃c̃ρ |Γ = −n̂ · ∇̃φ̃|Γ . (7.23)

The potential is then recovered from (7.1) in the form,

∇̃2
φ̃ = −c̃ρ, (7.24)

with the far-field boundary condition,

∇̃φ̃ → −E0L

Φ0

Ẽ, (7.25)

and the (equipotential) surface boundary condition

φ̃(Γ ) = Φ0ζ̃0, (7.26)

where ζ̃0 is the dimensionless equilibrium zeta-potential.
Since ε � 1, we introduce a locally Cartesian coordinate system {ñ, l̃}, where ñ is

locally normal to the surface, and l̃ is locally tangent to the surface. The governing
equations (7.22) and (7.24) are both linear in c̃ρ and φ̃, which allows the electrostatic
and ion fields to be expressed as a simple superposition of the equilibrium fields,

c̃ρ
eq = −φ̃eq = ζ̃0e

−ñ, (7.27)

and the time-dependent induced fields c̃
ρ

i and φ̃i, via

c̃ρ = c̃ρ
eq + c̃

ρ

i , (7.28)

φ̃ = φ̃eq + φ̃i. (7.29)

The induced electrostatic and ion fields must then obey

∇̃2
φ̃i = −c̃

ρ
i , (7.30)

∂c̃
ρ
i

∂ t̃
+ c̃

ρ
i − ∇̃2

c̃
ρ
i = 0, (7.31)

subject to boundary conditions

φ̃i(Γ ) = 0, (7.32)

n̂ · ∇̃c̃
ρ
i

∣∣
Γ

= −n̂ · ∇̃φ̃i |Γ , (7.33)

on the surface.
Another consequence of the linearity of (7.22) and (7.24), and therefore of the

decoupling of the equilibrium and induced fields, is that different characteristic scales
can be taken for the two sets of fields. We scale the potential in the equilibrium
problem with the equilibrium zeta-potential ζ0, and the potential in the induced
problem with E0L0, the potential drop across the length scale of the object. In order
that the total surface potential be small (Ψ � 1), however, we require that the total
zeta-potential be small,

(|ζ0| + |E0L0|)e
kBT

� 1. (7.34)

At the end of this section, we will briefly discuss the rich variety of nonlinear effects
which generally occur, in addition to ICEO, when this condition is violated.
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We expect the charge cloud c̃ρ and electric potential φ̃ to vary quickly with ñ, but
slowly with l̃ (along the surface). Furthermore, we expect the charge cloud to exhibit
two time scales: a fast (transient) time scale, over which c̃ρ reaches a quasi-steady
dominant balance, and a slow time scale τ̃c, over which the quasi-steady solution
changes. The physical arguments leading to (4.6) for the charging time suggest that
this slow time scale is given by τ̃c = 1/ε, which is not obvious a priori, but which will
be confirmed by the successful asymptotic matching.

In order to focus on the long-time dynamics of the induced charge cloud, and
guided by the above expectations, we attempt a quasi-steady solution to (7.30)–(7.33)
of the form

c̃
ρ
i = c̃

ρ
i (ñ, εl̃, εt̃), (7.35)

φ̃i = φ̃i(ñ, εl̃, εt̃). (7.36)

It can be verified that

c̃
ρ
i = A(εl̃, εt̃) e−ñ − ε

Ȧ(εl̃, εt̃)

2
ñ e−ñ, (7.37)

φ̃i = −A(εl̃, εt̃) e−ñ + ε
Ȧ(εl̃, εt̃)

2
[2 e−ñ + ñ e−ñ] + B(εl̃, εt̃) + C(εl̃, εt̃)ñ, (7.38)

solve the governing equations to O(ε2).
The equipotential boundary condition (7.32) is satisfied when

A(εl̃, εt̃) = B(εl̃, εt̃) + εȦ(εl̃, εt̃), (7.39)

so that the induced double-layer charge density is proportional (to leading order in
ε) to the potential just outside the double layer. The normal ion flux condition (7.33),

εȦ(εl̃, εt̃) = C(εl̃, εt̃), (7.40)

relates the evolution of the double-layer charge density to the electric field normal
to the double layer. Matching the inner region to the outer region provides the final
relations. In the limit ñ → ∞, the electrostatic and ion fields approach their limiting
behaviour

c̃ρ → 0, (7.41)

φ̃ → B(εl̃, εt̃) + C(εl̃, εt̃)ñ. (7.42)

7.2. Outer solution

We now turn to the region outside the double layer, and use overbars to denote ‘outer’
non-dimensional variables (scaled with length scale L0 and potential scale E0L0).
According to (7.37) and (7.41), any non-zero charge density c̄ρ that exists within the
inner region decays exponentially away from the surface Γ . A homogeneous solution
(c̄ρ

o = 0) thus satisfies (7.22) and the decaying boundary condition at infinity. With
c̄ρ

o = 0, (7.24) for the electrostatic field φ̄o in the outer region reduces to Laplace’s
equation,

∇̄2φ̄o = 0, (7.43)

with far-field boundary condition (7.25) given by

∇̄φ̄o → −Ê. (7.44)

To determine φ̄o uniquely, one further boundary condition on the surface Γ is
required, which is obtained by matching to the inner solution. The limiting value of
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the ‘outer’ field φ̄o,

φ̄o(r̄ → Γ ) → φ̄0(Γ ) + Ê⊥(Γ )n̄, (7.45)

must match the inner solution (7.42), which gives two relations

B(εl̃, εt̃) = φ̃0(̃l), (7.46)

C(εl̃, εt̃) = εẼ⊥(̃l). (7.47)

Using (7.47) in (7.40), the fact that C is O(ε) verifies that the assumed time scale
τc = τD/ε for induced double-layer evolution is indeed correct, as expected from
physical arguments (4.6).

7.3. Effective equations for ICEO in weak applied fields

Using the above results, we present a set of effective equations for time-dependent
ICEO that allows the study of the large-scale flows, without requiring the detained
inner solution. What emerges is a first-order ODE for the dimensionless total surface
charge density in the diffuse double layer, q̃ = A, so an ‘initial’ value for q̃ must be
specified. From (7.39) and (7.46), the ‘outer’ potential on the surface Γ is given by

φ̄o(Γ, εt̄) = q̃(Γ, εt̄), (7.48)

which, along with the far-field boundary condition (7.25), uniquely specifies the
solution to Laplace’s equation (7.43). From this solution, the normal field Ê⊥(Γ, εt̄) is
found, which (using (7.47) and (7.40)) results in a time-dependent boundary condition,

∂q̃

∂t̄
= εÊ⊥(Γ, εt̄), (7.49)

which is more naturally expressed as

∂q̃

∂t̂
= Ê⊥(Γ, t̂), (7.50)

in terms of the dimensionless time variable, t̂ = εt̄ = t/τc.
We have thus matched the bulk field outside the charge cloud with the ‘inner’

behaviour of the charge cloud in a self-consistent manner. The ‘inner’ solutions for cρ

and ζ equilibrate quickly in response to the (slow) charging, and affect the boundary
conditions which determine the ‘outer’ solution. Matching (7.47) and (7.40) results in
a relation between the charge cloud and normal ionic flux, confirming the validity
of (3.3) and (4.3), which were previously argued in an intuitive, physical manner.
This analysis has demonstrated that errors for this approach are of O(Ψ 2), O(Pe)
and O(ε2). In this limit, the system evolves with a single characteristic time scale,
τc = λDL0/D, set by asymptotic matching, which physically corresponds to an RC
coupling, as explained above.

7.4. Fluid dynamics

7.4.1. Fluid body forces: electrostatic and osmotic

Thus far, we have derived the effective equations for the dynamics of the induced
double layer. To conclude, we examine the ICEO slip velocity that results from the
interaction of the applied field and the induced diffuse layer. We demonstrate that, in
the limits of thin double layer and small surface potential, the Smoluchowski formula
(2.4) for fluid slip holds.

Following Levich (1962, p. 484), we consider a conducting surface Γ immersed in
a fluid, with an applied ‘background’ electrostatic potential φo. In addition, a thin
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double layer (with potential ξ ) exists and obeys

∇2ξ = − (n+ − n−)e

εw

= −n0e

εw

(
e−eξ/kBT − eeξ/kBT

)
, (7.51)

so that the total potential φ = φo + ξ . Note that this assumes that the double layer is
in quasi-equilibrium.

Fluid stresses have two sources: electric and osmotic. The electric stress in the fluid
is given by the Maxwell stress tensor,

Tij = εw

(
EiEj − 1

2
E · Eδij

)
, (7.52)

from which straightforward manipulations yield the electrical body force on the fluid
to be

FE ≡ ∇ · T = εw∇φ∇2φ ≡ εw∇(φo + ξ )∇2ξ. (7.53)

Osmotic stresses come from gradients in ion concentration, and exert a fluid body
force

FO = −kBT ∇(n+ + n−) = e∇ζ (n+ − n−) = −εw∇ξ∇2ξ. (7.54)

Thus the total body force on the fluid, is given by the sum of FE and FO ,

F = εw∇φo∇2ξ = ρ EB. (7.55)

Therefore, when both electric and osmotic stresses are included, the body force on
the double layer above a conductor is given by the product of the local charge
density ρ and the ‘background’ electric field EB = − ∇φo (which, importantly, does
not vary across the double layer). Note also that the same fluid flow would result if
the double-layer forcing ρ(EB + Eξ ) were to be used, since the osmotic component
(7.54) is irrotational and can be absorbed in a modified fluid pressure.

7.4.2. ICEO slip velocity

Finally, we examine the ICEO slip velocity that results when the electric field −∇φo

drives the ions in the induced-charge screening cloud ρ.
We look first at the flow in the ‘inner’ region of size λD . For the ICEO slip velocity

to reach steady state, vorticity must diffuse across the double layer, which requires
a very small time τω(λD) = λ2

D/ν ≈ 10−10 s. Because τω is so much faster than the
charging time and Debye time, we consider the ICEO slip velocity to follow changes
in ζ or φ instantaneously. As noted above, the unsteady term may play a role in
cutting off the oscillating component of the bulk flow. However, our main concern
is with the steady, time-averaged component, which simply obeys the steady, forced
Stokes equation.

Non-dimensionalizing as above, we re-express the forced Stokes equations (7.4),
with forcing given by (7.55), using a stream function ψ defined so that ul = ∂nψ and
un = −∂lψ . The stream function obeys

∇̃4
ψ̃ =

(
∂c̃ρ

∂ñ

∂φ̃

∂l̃
− ∂c̃ρ

∂l̃

∂φ̃

∂ñ

)
, (7.56)

where the stream function has been scaled by ψ = (εwE0ζ0/ηκ)ψ̃. We perform a local
analysis around the point l̃ = 0 of the ICEO flow driven by an applied tangential
electric field {Ẽ‖, Ẽ⊥}. Using representations of c̃ρ and φ̃ around l̃ =0,

c̃ρ = c̃ρ(εl̃) e−ñ, (7.57)

φ̃ = −Ẽ‖ l̃(εl̃, εñ) − Ẽ⊥ñ(εl̃, εñ), (7.58)
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it is straightforward to solve (7.56) to O(ε). The tangential and normal flows are then
given by

ul = −εw

η

[(
ζ (l)E‖(l) + ε

∂ζ

∂l̃
E⊥

)
(1 − e−κn) + ε

∂E‖

∂ñ
(3 − (3 + κn) e−κn)

]
, (7.59)

un = −ε
εw

η

∂

∂l̃
(ζE‖)(1 − κn − e−κn), (7.60)

where ζ (l)E‖ contains terms of O(ε). To leading order, then, the slip flows obey

ul → −εw

η
ζ (l)E‖(l) + O(ε) and un = O(ε). (7.61)

The tangential flow does indeed asymptote to (2.4), with local zeta-potentials and
background field, and the normal flow velocity is smaller by a factor of O(ε).

Thus an ICEO slip velocity is very rapidly established in response to an induced
zeta-potential and ‘outer’ tangential field. Furthermore, despite double-layer and
tangential field gradients, the classical Helmholtz–Smoluchowski formula, (2.4),
correctly gives the electro-osmotic slip velocity. This may seem surprising, given
that the tangential field vanishes at the conducting surface.

The final step involves finding the bulk ICEO flow, which must be found by solving
the unsteady Stokes equations, with no forcing, but with a specified ICEO slip velocity
on the boundary Γ , given by solving the effective electrokinetic transport problem
above.

7.5. Other nonlinear phenomena at large voltages

Although we have performed our analysis in the linearized limit of small potentials,
it can be generalized to the ‘weakly nonlinear’ limit of thin double layers, where
(2.7) holds and Du � 1. In that case, the bulk concentration remains uniform at
leading order, and the Helmholtz–Smoluchowski slip formula remains valid. The
main difference involves the time-dependence of double-layer relaxation, which is
slowed down by nonlinear screening once the thermal voltage is exceeded. It can
be shown that the linear time-dependent boundary condition, (3.3) or (7.50), must
be modified to take into account the nonlinear differential capacitance, as in (4.12).
Faradaic surface reactions and the capacitance of the compact Stern layer may also
be included in such an approach, as in the recent work of Bonnefont, Argoul &
Bazant (2001).

The condition (2.7) for the breakdown of Smoluchowski’s theory of electrophoresis
(with ζ = ζ0 + E0a) coincides with the condition τc(ζ ) � τD , where τc takes into
account the nonlinear differential capacitance (4.14). When this condition is violated
(the ‘strongly nonlinear’ regime), double-layer charging is slowed down so much by
nonlinearity that it continues to occur at the time scale of bulk diffusion. At such
large voltages, the initial charging process draws so much neutral concentration into
the double layer that it creates a transient diffusion layer which must relax into the
bulk, while coupled to the ongoing double-layer charging process. Bazant et al. (2004)
explore such processes.

In the strongly nonlinear regime, the Dukhin number is typically not negligible, and
bulk concentration gradients (and their associated electrokinetic effects) are produced
by surface conduction (see Dukhin 1993 and Lyklema 1991). Tangential concentration
gradients modify the usual electro-osmotic slip by changing the bulk electric field
(concentration polarization) and by producing diffusio-osmotic slip. Therefore, both
the steady state and the relaxation processes for ICEO flows are affected.
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Finally, large voltages can also lead to the breakdown of ideal polarizability
via spontaneous Faradaic reactions on different sides of the object, as noted by
Murtsovkin (1991). Gamayunov et al. (1992) observed that the induced-charge electro-
osmotic flow around metal colloidal spheres reverses direction for large colloids, and
argued that Faradaic reactions were responsible. Furthermore, Barany et al. (1998)
measured large conducting colloids to have ‘superfast’ (second-kind) electrophoretic
velocities. They argued that sufficiently strong fields cause Faradaic currents at the
two sides of the colloid (as though they were electrodes), resulting in the development
of a bulk ‘space charge’ and, correspondingly, second-kind electrophoresis.

A complete description of time-dependent ICEO at large voltages, which is beyond
the scope of this article, would require considering all of these effects together.
The approximation of thin double layers, which has been applied mostly to steady-
state problems involving non-polarizable objects, is a good starting point. However,
the presence of multiple length and time scales complicates mathematical analysis,
especially in any attempt to go beyond the leading-order approximation. An important
goal, therefore, would be to extend the method of matched asymptotic expansions to
derive effective equations and boundary conditions for strongly nonlinear ICEO and
to carefully analyse asymptotic corrections.

8. Summary and discussion
In this article, we have described the general phenomenon of induced-charge

electro-osmosis (ICEO), which includes a wide variety of techniques (both old and
new) for driving steady micro-flows around conducting or dielectric surfaces using
AC or DC electric fields. We have given a physical picture of the basic mechanism
for ICEO, involving the inhomogeneous surface charge induced in the conductor
in order to maintain an equipotential surface in the presence of an applied field.
In response, the electric field normal to the surface/charge cloud drives ions into
an inhomogeneous (dipolar) charge cloud, which is in turn driven by the tangential
electric field. This results in ICEO slip velocities of magnitude U0 ∼ εwE2

0a/η. A
charging time scale τc ∼ λDa/D is required for these induced charge clouds to form.
Due to the dependence on the square of the applied field E0, a non-zero time-averaged
ICEO flow can be driven using AC fields of sufficiently low frequencies (ω � 1/τc).

We have performed explicit calculations for the steady and unsteady ICEO slip
velocities (suddenly applied and sinusoidal fields) around symmetric conducting
cylinders. The ICEO flow for conducting cylinders is quadrupolar and decays with
distance like r−1. We have also performed a systematic, matched-asymptotic analysis
of the equations for the ion transport, electrostatics and fluid flow to confirm the
validity of the physically intuitive approach. The analysis produces a set of effective
equations which ‘integrate out’ the dynamics of the thin screening cloud, allowing the
bulk ICEO flow to be calculated with macro-scale calculations alone.

We have also considered polarizable dielectric surfaces for two reasons. First, we
have shown that a dielectric layer of thickness λd can reduce the strength of the
ICEO slip velocity by a factor of order λD/a when the dielectric layer is sufficiently
thick (λd 
 λD). This underscores the necessity of using clean and/or treated surfaces
to ensure a clean conductor/water interface. Second, an ICEO flow is set up even
around a purely dielectric colloidal particle of permittivity εd , but with reduced ICEO
slip velocity, U0 ∼ εdE

2
0λD/η.

In this article, we have concentrated upon ICEO flows in systems of high symmetry:
circular cylinders and spheres in spatially uniform applied fields, for which simple
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exact solutions are possible. In a companion article, we will explore the implications
of broken spatial symmetries – both via asymmetric surface properties and gradients
in the applied electric field – along with more potential applications to microfluidic
devices. For a brief summary of our results, the reader is referred to Bazant & Squires
(2004).

In conclusion, ICEO is a rather general and potentially useful phenomenon, capable
of producing large fluid ‘slip’ velocities around polarizable surfaces, under AC or DC
fields. Many variants exist on the basic situations presented in this article. For
example, one can apply spatially inhomogeneous electric fields, vary the geometry
or electrical properties of the polarizable surface, apply fixed-potential (or actively
controlled potential) ICEO flows, and so on. The directions seem promising to pursue
experimentally in real microfluidic devices.

In the presence of bulk concentration gradients produced by surface conduction,
Faradaic processes, or transient double-layer adsorption, more general electrokinetic
phenomena may also occur at polarizable surfaces. These effects have been described
to varying degrees in the Russian literature on ‘non-equilibrium electrosurface
phenomena’ in colloidal systems, especially over the past few decades. It is our
hope that this mature subject, which includes ICEO as a limiting case, will receive
renewed attention from the microfluidics community in the coming years.
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